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OPTIMAL DISPATCHING OF A FINITE CAPACITY SHUTTLE

Rajat K. Deb

We consider the problem of determining the optimal operating policy

of a two terminal shuttle with fixed capacity Q < ~~~. The pass engers

arrive at each terminal according to Poisson processes and are transported

by a single carrier operating between the terminals . The interterntinal

travel time is a positive random variab le with finite expectation. Under

a fairly general cost struc ture, we show that the policy which minimizes

the expected total discounted cost over infinite time horizon has the

following form: Suppose the carrier is at one of the terminals with x

number of waiting passengers and suppose that y number of passengers

are waiting at the other terminal. Then the optimal policy is to dispatch

the carrier if and only if x > G(y), where G(y) is a monotone decreasing

control function. Furthermore, G(y) is always less than or equal to the

carrier capacity Q. This control function can be approximated by the

linear functions G(y) = K - ~y.

KEY WORDS: Finite Capacity Shuttle, Bulk Queue, Markov Decision Process,

Dynamic Programming, Optimal Control, Monotone Policies.
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OPTIMAL DISPA TCHING OF A FINITE CAPACITY SHUTTLE

Raja t  K . Deb

1. Introduction

We consider the problem of determining optimal control policies for

operating a shuttle service between two terminals. The passengers arrive

at these terminals (numbered 0 and 1) according to independent Poisson

processes X(t) and Y(t) with respective arrival rates and

The carrier that shuttles back and forth between the terminals has a

capacity Q < ~~ . The interterininal travel times assumed to be independen t

random variable with identical distribution B ( . )  and are independent of

everything else. All arriving passengers wait to be transported to the

other terminal where they exit the system. The system is reviewed at

those points in time when either the carrier has just arrived at one of

the terminals, or when the carrier is waiting at one of the terminals and

a new passenger arrives. The nex t arrival may take place at either of

the terminals. The state of the system is denoted by (x,y,5) where x

is the number of passengers at terminal 0, y is the number of passengers

at terminal 1, and 5 is respectively 0 or 1. according to whether

the carrier is at terminal 0 or 1 respectively. At each review point and

only at these points, one of the following actions is taken: (1) the

carrier is dispatched with a batch of passengers (when x customers are

at the terminal this batch equals xAQ ~ min(x,Q)), or (2) the carrier

is not dispatched . Note that upon taking action (1) or (2) the next

control action is taken when the carrier arrives at the other terminal

or when next passenger arrives at terminal 0 or 1.

1
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Costs are charged for carrying the passengers and holding the

passenger in the system. The cost of carrying y passengers is R+cy,

where R and c are non-negative constants. The cost of holding x

customers is hx per unit time. Without loss of generality we assume

that no holding is charged for those passengers who board the carrier

before it leaves the terminal.

Our objective is to find a control policy, that is, a sequence of

decision rules for selecting actions (1) and (2) at each review point,

which minimizes the expected discounted cost over an infinite time horizon.

Optimal control policy for the discounted cost case is presented in

Section Ii. (Theorem li..2). The optimal policy is of the form: Suppose

(x0, x 1, ~) be the state of the system at a review point. Then the

optima l policy is to dispatch the carrier if and only if > G5(x 15 ) ,

where Gb(x l8) is a monotone decreasing control function.

There has been relatively little published work on shuttles with

stochastic arrivals. Deb and Serfozo f2J determined optimal dispatching

rules for a one terminal system. Ignall and Kolesar [I4~] extended a one

terminal system to a two terminal system with infinite capacity, where

dispatching decision is made only at one of the terminals. They conjectured

that a finite capacity shuttle will have an optimal control rule of the

same form. Barnett [1) compares the average number waiting in the system

for several control policies. In [6] Ignall et al. have suggested a way

of computing the average queue size and the average number of trips for

an infinite capacity shuttle under a simple dispatching rule based on

the total number of passengers in the system. Our analysis differ from

2
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others in the sense that we consider a more realistic finite capacity

model and allow the dispatching decisions to be made at both the terminals.

It is interesting to note that the finite capacity shuttle model is

also applicable in the cases where a single server attends two queues as

in the case of multiplexing and some special cases of mult iprogramming .

In these cases the server alternates her services between the two queues.

2. Preliminaries

The notation of this section is used throughout this paper. We let

X(t) and Y(t) denote the number of arrivals in time t at terminals

O and 1 respectively. Set Z(t) = X(t) + Y(t) and ~ = +

Then Z(t) is a Poisson process with intensity A. Let the random

variab les -r, 
~~ 

and 
~l 

respectively denote an arbitrary interterminal

travel time and arbitrary passenger interarrival times at the terminals

O and 1. The random variables ‘t, 
~~ 

and have respective distri-

butions 1 - exp (-A0t), 
I - exp (A~t) and B(t). Writing ~ =

it can be seen that the random variable ~ has the distribution 1 - exp (-At).

Let V(x,y,5) be the optimal a-discounted cost over the infinite time

horizon with continuous discounting factor a and initial state (x ,y,5).

Note that herein we supress the effect of the discoun t factor a on V.

Since the cost of never dispatching the carrier is

(2.1) E f exp(-at) h(x+y÷Z(t))dt = h(x÷y÷Va)/a <~~ ,

3
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the a-discounted cost V(x,y,5) < h(x÷y÷~~a)/a. Using Theorem 7.1 of [v] ,
which also holds for semi-Markov processes with unbounded costs, we obtain

the following optimality equation

(2.2) V(x,y,5) = min(f(x,y,b), g(x,y,b))

where f is the cost of not dispatching the customer, and holding the

waiting customers for a time ~ until the next arrival before taking the

next action. g(x,y, 5), is the cost of dispatching the carrier from the

terminal 5, carrying the passengers, holding the excess passengers (if

any) and the new arrivals for a period ‘r, after which another action is

taken with the system in state (x÷X( ’r) - (l-5)xAQ , y+Y(T) - b (yAQ), 1-b).

Clearly,

(2.3) f(x,y,5) = EU e~~
t 
h(x+y)dt ÷ e~~~ V(x÷X(~ ) , y÷Y(~ ) , 5))

0

= H(x+y) + apV(x÷l,y,5) + aqV(x ,y÷l ,5) ,

where

H(x) = E f e
_
~
t 
h(x)dt = hx/ ( c4,.A) ,

0

a = E(exp( _a~) )  = V(a~-A) ,

p = PfX(~) = 1] = P[Y (~) = 0] = ?Lj(A0+A 1)

q = P[X(~) = 0] = P[Y(~ ) = I] = I-p

and

ii. 
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(2.~) g(x,y,0) = K + c(~~ Q) + E(f e~~
t 
h(x+y-~~Q÷Z(t))dt

0

+ e~~
T V(x -xAQ÷X( t) ,y+Y (t ) , 1))

= R + c(xAQ)  + iI( x-4-y-xAQ) + d .~ V (x-xAQ÷j,y÷i-j,l),
i�O,0~~

j.~ 
i

(2 .5) g(x,y,l) = R + c(yAQ) + i~[(x+y-yAQ)

+ d~ . V (x+j, y-yAQ+i-j , o) ,
i>0,0<j~~i 

J

where

Ii(x) = E f e
_at 

h(x+Z(t))dt
0

= (l-b) hx/a + hA (l-b)/a
2 

- hAcf
1 f te~~

t 
dB(t) ,

b = E(exi<-ar)), ~~~ = a~
’p

1.- 
q~~ ~

= ~ 
((a +)~ t)

i 

~~~~~~ 
~ dB( t) , q., . = ( i’) p~ q

i )

Note that (pr) 
and (qjj) 

are probability mass functions, ~~~~ = ~~~~ = b.

Whenever both the terms on the right of (2.2) are equal, that is f = g,

we write

(2 .6) V(x ,y,b) = f (x ,y,5)

Also note that from the definition of H and i~ it follows that

(2 .7) 11( x) ÷ al~(x+ 1) = i~(x) + Ld~ 1 H( x÷i) = A(x) + ~ atp1 H(x+i)J i~~0

1 
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[ In addition, for any function ~~x,y,z) we define the difference operator

A as follows

Aw
0(x,

y,z) = v(x,y,z) - w( x_ 1,y,z1)
(2.8)

Aw
1(x,

y,z) = w(x,y,z) - w(x,y_ ].,z)

For the linear functions H and R
, 

we def ine

(2.9) AR = 11(x) - H(x- 1) = (l_a)h/a and = (l-b)h/a

We approach the problem of finding an a-optimal using the finite horizon

n-period problem which we define in the equation (2.10). We show that

for each n and hence in the limi t a monotone policy of the form described

in Section 1 is optimal. We present these policies in Theorem !i..2. The

n-period problem is defined as follows. Let

( V°(x,y,8) = h(x+y.i-7~a)/a
(2.10) 

~ nV (x,y,5) = min(f (x,y,5), g (x,y,b)J ,
where

(2.11) f~(x,y,5) = H(x+y) + apV~~
’(x÷1,y,5) + aqV’~~

1
(x,y+l,5)

(2 . 12) g
nt
(x,y,0) = R + fl(x÷y-xAQ) + c(XAQ) + 

~
d
ij 

V~~~(x-xttQ+j, y÷i-j,l),

(2.13) g”(x,y,l) = K + ~(x÷y-yAQ) ÷ c(yAQ) + �d ij 
V’~~~(x+j, y-yAQ+i-j,O).

The suimnation on d
1~ is taken over all i > 0 and 0 < j < I. We can

consider ~~ as the cost of operating the system for n review periods

and incurring a final cos t V0 at the end of the n-th period. Note that

6 
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if the n-th review takes place at t then t —
~~~~~~ as n —

~~~~~~ and the

cost V° discounted to time 0 is E(exp(-at~ h(x÷y+Z (t)))

= E (exp~at~) h(x÷y÷A (t )) —~0 as n —*~~~~~ Furthermore, V~ increases

monotonically with n, because if ‘P ~ then one can decrease

by using the n-period policy for the (n-l)-period problem . Moreover, from

(2.1) we get h(x+y÷~~a)/a > Vn(X ,Y,b) > V”~~(x ,y,b) > 0 and hence t V

as n —* co~ Now using the Theorem 6.12 of [7] (which a l so  ho lds for dis-

counted semi-Markov processes) or more appropriately Theorem 2.2 of [9] ,

we assertain that the stationary policy which sa t i s f i es  equation (2.2)

is optimal. Note that in 18,9] the problem is set up for maximization,

while we are minimizing the total expected costs. If we take this into

account, then it is easy to show that the conditions Al and A2 of [9] are

satisfied and hence the Theorem 2.2 of [9] holds.  As a consequence of

convergence of ‘P to V, we conclude that f n 
— f and g

fl 
‘-~ g.

,~~. n-Period Problem

In this sec tion we c onsider the n-period prob lem defined in (2.10)

and obtain results similar to those of 13]. Without  loss of clarity, we

shall often drop the subscripts and arguments of the functions defined

in (2 .2) - (2 .13) . For instance, the statement AV~ >L~g~ will  stand

for the statements AV~(x ,y,b) >A g~(x,y,b) and AV?(x,y,b) >A g’~(xy 5)

fo r all x, y, and 5.

Lemma 3. 1. Let Afn > Ag
o
. Then

(i) Av~~<A f~
’.

(ii) AV~~>A g”.

7
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Proof. Clearly, (2.10) implies ‘P < f fl, ~~ < g
n and for any x, y and S

either

(3.1) ‘P(x,y,b) =

or

(3.2) ‘P(x,y,5) = g~(xy b)

If (3.1) holds, then

(3.3) AV~(x÷ 1,y,5) <Af~(x÷ 1,y,b), AV~(x,y÷l,5) <A f~(x,y÷l,5)

and

(3.~) 
AV~(x,y,5) >Af~(x,y,b) >A g~(x ,y,b)

And if (3.2) holds, then

AV~(x+l,y,5) <A g~(x÷l,y,5) <A f~(x÷ 1,y,b) ,
( 3.5)

AV~(x,y+1,b) <Ag~(x,y+1,b) <A f~(x ,y÷ 1,b) ,

and

(3.6) AV~(x,y,5) >A g~(x,y,5)

Now, combining (3.3) and (3.5), we have AVn <A f
n
. From (3.14.) and (3.6)

n n
we obtain A’! >A g .

Lemma 3.2. Let Af~ > Ag~ and suppose that for all x,y and S

(3.’?’) Af~(x,y,b) >A f~(x,y÷l,b), Af~(x ,y,b) >A f~(x+l,y,b) ,

(3.8) A~~(x,y,b) >A g~(x,y+l,5) and Ag~(x ,y,5) ~~Ag~(x+1,y,5)

8
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Then

(i) AV~(x ,y,b) >AV~(x ,y÷1,5),

(ii) AV~(x ,y,b) >AV~(x÷1,y,5).

Proof: The proof is similar to that of Lemma 3.1. Suppose (3.1) holds,

then using the fact V < f, inequality (3.7) and the Lemma 3. 1, in that

order, we have

fl n
z~V0(x ,

y,5) >~~f0
(x ,y,5) >Af0

(x ,y÷l,b) >L~V0(x ,y÷l,5) ,
(3.9)

AV~(x ,y,5) >Af~(x ,y,S) >i~f~(x+l,y,5) >AV~(x+l,y,S)

And if (3.2) holds then using the fact V < g, (3.8) and the Lemma 3.1

we obtain

AV~(x,y÷1,S) <A g~(x ,y+l,S) <Ag~(x ,y,S) <AV~(x ,y,S) ,
(3. 10)

AV~(x÷ 1,y,S) <A g~(x+1,y,S) <A g~(x ,y,S) <AV~(x ,y,S)

This completes the proof.

Theorem 3.3. If h > a(c + R/Q) then for all x, y and n > 1

(i) Af’~ > A g~,

(ii) AV~(x,y,8) >AV~(x ,y+l,5),

(iii) AV~(x ,y,S) >AV
’
~(x÷ 1,y,S),

(iv) AV’~ > c .

9
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Proof: We prove this Theorem by induction. Using the definition of Af’1

and Ag~
’, we have for n = I

(3.11) Af
1 

= AR + ah/a = (l-a)h/a + ah/a = h/a

From the definition of ~i and the fact Ed . = b we have
ij

(3. 12) Ag~(x,y,l) = Ag~(x,y,0) = A~ + zd~ . h/a = h/a ,

and

for S = 0, x <Q (b= l, y < Q),
(3.15) Ag~(x,y,S) 

~~Au + Edi. h/a = h/a for 5 = 0, x > Q (5= 1, y > Q).

Since h>a (c + R/Q), therefore (5.11) - (3.15) imply

( 3. 11 4 -) Af
l

> A g
l

Moreover, using (3.11) - (3. 15) it is easily varified that the conditions

(5.7) and (5.8) of the Lemma 5.2 are satisfied and hence parts (i), (ii)

and (iii) of the Theorem 3.5 are true for  n = 1. To prove part (iv) note

that from (3.114.), Lemma 3.1, (3.12) and (3.13) we have

(3.1~) AV1 >A g1 > { C

h/a > c

Now, assuming that the Theorem is true for all n k, then for n = k÷l,

we have

_____________________ -5 5_~~5 -- -
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(3.16) Ag~~
1
(x ,y,O) = AU + Ed~~ AV’~(x-xAQ ÷j, y÷i-j, I)

<AU + Ed
~~ 

Af~(x-xA (~÷j, y+i-j, 1)

-
- 

= + Ed
. 1

LAH + ap Av~
’
~~(x-x/~Q÷j+l, y÷i-j, 1)

+ aq AV~~
1
(x-xAQ ÷j, y+l+i-j, 1))

< A R  + Ed~~ AR ÷ aLd1~
(~~V~~

1
(x÷l-(x ÷1)AQ+J, y-+-i-j, 1)

+ q~V~~
1
(x-xAQ+j, y÷1÷i-j, 1))

= AR + ap(AU + Ed~~ AV~[
1
(x÷l-(x ÷1)AQ÷J, y-+-i-j, 1))

+ aq(Aii + Ed~~ AV~
’
~~(x-xAQ÷j, y+i-j+l, 1)

AR + ap Ag~(x÷1,y,0) + aq Ag~(x,y÷l,O)

<AU + ap AV~(x-i- 1,y,0) ÷ aq AV~(x ,y÷l,0)

k÷ 1
= Af

1 (x,y,0)

The lines 1, 3, 6 and 8 of (3. 16) follows from the definitions of Ag and

Af. Lines 2 and 7 follows from the fact that AVk <Afk and Agk <AVk

Also note that for x > Q, x-xAQ+l = (x+l) - (x+1)AQ and for x < Q-l,

x-xAQ = (x÷1) - (x+l)AQ. Therefore, for x < Q-J. line I~ equals line 5

and for x > Q, we obtain line 1~ by using the induction hypothesis

AV~[
1
(x÷ 1,y,l) <AV~[

l(x,y,1) for all x and y. Finally, line 5 can

be obtained from (2.7) by noting that p+q = 1. Using symmetry and

arguments similar to those used in (3 .16)  we obtain

__  - - .~~:. 
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(3.17) Ag~~
’(x ,y,1) <Af~~

1
(x,y,l)

Moreover, from (2.9) and the induction hypothesis AVk > c we have for

x < Q

(3.18) Ag~~
1
(x,y,0) = c = (1-a)c + ac < (l-a)h/a + c

= AR + apc + aqc <AH + ap AV~(x÷l,y,0)+aq AV~
’
~(x ,y+l,O)

= Af~
’
~~(x,y,0)

For x > Q, using the fact that AVk <A fk Ag
k <Av k, definitions of Af

and Ag, and the quality (2.7) we have

(3.19) Ag~~
1(x,y,0) = AU + Ed

~j 
AV~(x-Q÷j, y+i-j, 1)

<A ll + Ed~~ Af~(x_Q +j, y+i-j, 1)

= All + Ed .~ Alt + Zd~~(a~ AV~~~’(x-Q÷l÷j, y÷i-j, 1)

+ aq AV~
4
(x-Q+j, y+i-j÷I, i))

= AR + ap(AU + Ed~~ AV~~
1
(x-Q +l+j, y+i-j, 1))

+ aq(Aft ÷ Ed~~ AV~~~(x-Q+j, y+l÷i-j, 1))

= AR + ap Ag~(x+l,y,O) + aq Ag~(x,y÷ 1,0)

<AR ÷ ap AV~(x+1,y,O) ÷ aq AV~(x,y+1,O)

= Af
0 (x,y,O) .

12
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Combining (3.18) and (3.19) we obtain Ag~~
1
(x ,y,o) <~~f~~

’(x ,y,0) using

arguments similar to those used in (3.18) and (5.19) we can show that

Ag~~~(x ,y,1) <A f~~
1
(x ,y,l) and hence

(5.20)

To prove parts (ii) and (iii) of this theorem it is sufficient to show

that the condition (3.7) and (3.8) of the Lemma 3.2 are satisfied. Using

the induction hypothesis and definition of Af we have

Af~~
1
(x,y+l,5) = AU + ap AV~(x+1,y+l,S) - aq AV~(x,y~~,b)

<AR + ap AV~(x÷1,y,S) + aq AV~(x ,y+l,5)

= Af~(x ,y,5) ,

and

= AR + ap AV~(x+2,y,5) + aq AV~(x÷l,y+1,5)

< All + ap AV~(x÷l,y,8) + aq AV~(x ,y÷l ,5)

k
= Af

1(x ,
y,5)

To prove (3.8), note that for S = 0, x < Q, y > 0

(3.21) Ag~~
1
(x,y,b) = c

15
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and for S = 0, x > Q, y > 0 and S = 1, x ~ 0, y > 0, using the fact

AV~(x,y÷1,5) <AV~(x ,y,5) for all x, y and 5, we have

(3.22) Ag~~
1
(x,y÷1,b) = AU ÷ Ed~~ V~(x-(1- b)Q+j, y+l-5(y+1)~Q÷i-j, l-S)

<AU + Ed~~ V~(x- (1-b)Q+J, y-S(yAQ)+i-j, 1-5)

k+ 1
= Ag0 (x,y,5) .

Therefore, using (3.21) and (3.22) we obtain

(3.23) Ag~~
1
(x,y,5) >A g~

’
~~(x,y+1,5)

Using arguments similar to those used in (3.23) we obtain

(5.214.) Ag~~
1
(x,y,S) >A g~~

1
(x+l ,y,S)

Finally to prove part (iv) of this theorem, we note that (3.20) implies

that the Lemma 3.1 is true for n = k-i-I and hence

(3.26) AV (x,y,S) > Ag~~
1(x,y,S)

= c for 5 = O ,x < Q (S = l ,y<Q ) ,

= AU + Ed~~ AVk(x_ (l_S)Q+J, y-SQ+i-j, 1-S) otherwise

> AU + Ed1~
c > C

The last line in the above is obtained from the induction hypothesis and

the fact that h/a > c. This completes the proof.

hi .
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Lemma 3.~+. Let h >a (c + R/Q). Then

(i) ‘P(x,y,O) = g
n(x ,y,o) for all x > Q,

(ii) V°(x,y,l) = g~
’(x,y,l) for all y > Q.

Proof. From (2.10) - (2.13) we have

(5.26) f
1
(x ,y,S) = R(x+y) + ah(x+y+l +

= h(x÷y+ Va)/a ,

and from S = 0, writing e = xAQ we have

(5.27) g
1
(x,y,0) = R + ce + U(x-i-y-e) + Ed~~(x÷Y-e-4-i+N/a)h/a

From definition of A(x) we have

(3.28) U(x) = (l-b)hx/a + ((l-b)/a - f t exp(-at) dB(t)) h~~a

= (l-b)hx/a + (A(l-b)/a - n a’~ p )  h/a

= (l-b)hx/a + (A(l-b)/a - ~ id1
,) h/a

Using (3.27), (3.28) and noting that Ldij 
= b, we have

(3.29) g
1
(x ,y,0) = (R + ce - he/a) + (x÷y-,-?sja) h/a

15
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If x > Q, then e = Q, and using the fact h > a(c + R/Q), we have

g (x,y,0) < f (x,y,0). Hence V (x,y,0) = g (x,y,0). Now, suppose that

n n
for all x > Q and n <k , f (x,y,0) > g (x ,y,O) and consequently,

V~
’(x,y,O) = S

n
(XYO ) Then using the induction hypothesis, equation (2 .7)

and the fact h > a(c + R/Q), we have

f
k+l

(xyo) = H(x+y) ÷ ap V
k
(x÷ l,y,O) + aq v

k
(x,Y÷l,o)

H(x+y) + ap[R + U(x+y+1-Q) + cQ

÷ Ed1~ 
V
k_l

(x+l_Q+j, y+i-j, 1))

+ aq~R + fl(x÷y+1-Q) cQ

+ Ed1~ v
k_l

(x_Q÷ j, y+1÷i-j, 1))

R(Q) ÷ U(xi-y-Q) + a(R÷cQ) + Ed~ Jll(-x+Y+l-Q+i)

÷ ap V (x÷l-Q+j, Y-i-i-j, I)
k-i

+ aq V (x-Q+j, y+1÷i-j, 1))

� R(Q) - (i_a) (R+cQ) + K + eQ + U(x-i-y-Q)

+ Ed1~ 
V~(x~Q÷j, y+i-j,

= (i-a) Q(h/a - c - R/Q) ÷ gk+l(xyo )

k+l> g (x,y,O) .

For S = 1 and y > Q, the proof is analogous.

Lemma 3.5. Let h <a (c + R/Q). Then for all x > 0, y > 0 and S € (0,1)

= f~(X ,Y,S) = ( x-i-y÷Va) h/a .

16
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Proof. Using (5.26) - ( 5. 2)) and letting e = x for 5 0 and e = y

for b = l , we have

f’(x ,y,S) = (x÷y+?~’a) h/a

and

g
1
(x ,y,S) = R ÷ c(eAQ) - h(eAQ)/a + (x÷y-s-lsja) h/a

Note that h(eAQ) < c(eAQ) + R(eAQ)/Q < c(eAQ)+R. Hence g1(x ,y,0)

> f 1(x ,y,0) = (x-i-y÷7~Ja)h/a = V
1
(x ,y,0). Now, suppose that the Lemma

is true for all n < k. Then for n = k-i-I,

g
k+l(xy 0) = K + c(xAQ) + U(x-i-y-xAQ) + Ed1~ 

V
k(x_XAQ÷j, y+i-j, 1)

= R + c(xAQ) + U(x÷y-xAQ) + Ed .~ (x+y-xAQ+i+?Ja)b/a

> (x+y÷?Ja)h/cr = f~~
4
(x ,y,0)

Similarly one can show that gk+l(xy1 ) > f
k+l

(x,y,l) = (x+y+?v~’a) h/a.

Hence ‘P(X,Y,S) = f’~(x,y,S) = (x+y-i-?~/a) h/a for all n~~ 1.

Li- . Optimal Discounted Cost Policy

In this section we present the main results of this paper. These

results are obtained directly from the lemmas and the Theorem of the

Section 3. We suimnarize these results in the following corollary.

17 
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Corollary 14 .1.

(i) If h <  a(c + R/Q), then for all x, y and S

V (x,y,S) = f(x,y,b) (x-i-y+isJa) h/a

(ii) If h > a( c + R/Q), then

(a) A f > Ag,A V < A f,A V > A g;

(b) AV
0(x,y,S) 

>AV
0(x,

y÷1,8), AV
1(x ,y,S) 

>AV 1(x+l,y,S);

(c) A V >c ;

(d) For all x > Q, y > 0 and S = 0 (x > 0, y > Q, S = 1)

V (x,y,S) = g(x,y,S).

From the comments at the end of Section 2, we know that V~ —+V , g
” .-

~ g

and f
n 

—~ f, and hence AV~ —,AV. Therefore, 1j~.1(i) follows from the

Lemma 3.5. Parts (a), (b) and (c) of the Corollary 1i..l(ii) come from

Theorem 5.3 and Lemma 3.1. Finally, part (d) in the above is obtained

from Lemma 3.14-.

Theorem 14.2.

(i) If h < a(c ÷ R/Q), then the policy of never dispatching the

carrier is a-optimal and V(x,y,S) = h(x+y+?~
/a)/a.

(ii) Let h >a (e + R/Q) and (x,y,S) be the state of the system.

Then for S = 0 (5 = 1), there is a critical number (3
0(y) 

< Q (G1(x) < Q),

such that following is an optimal policy:

18
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Dispatch the carrier if x > G0(y) (
y > G1(x)) 

and wait

for the next arrival if x < G0(y) (
y < G1(x))

Furthermore, G0(y) 
and C

1(y) 
are respectively monotone decreasing

functions of y and x~

Proof. The first part of this Theorem follows directly from the Corollary

Ii..l(i) and the fact that f(x,y,S) is the cost of the action of not

disptaching the carrier.

Now, we prove the second part of the theorem for S = 0. The

proof for the case S I is similar to the case S = 0. Let y be

fixed and

(14..l) G
0(y) 

= min(x > 0 : f(x,y,O) > g(x,y,0))

From the Coroll ary )-~.l(ii)(d), it follows that for all x~~ Q

f(x,y,0) > g(x,y,O) = V(x,y,O) and hence G0(y) < Q. Now, it suffices

to show that

(li- .2) V (x,y,O) = g(x,y,0) for all x 
~~~ 
G0(y) .

We establish the validity of (li-.2) by induction. Clearly (1~.2) holds

for x = G
0
(y). Assume that (li~.2) is true f or some x >  G

0(y)
. Then

using the Corollary ).i..l(ii)(a), we have

( 14 .3) V(x-i-l,y,O) - V (x,y,0) > g(x-i-l,y,0) - g(x,y,O)

19
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Then using (14.5) and the induction hypothesis, which imply V (x,y,0)

= g(x,y,O), we obtain V(x÷I,y,O) > g(x+l,y,0). But from (2.2). We

know V (x,y,O) < g(x,y,O) and hence V(x+l,y,O) = g(x-i-l,y,O). Again

fran the definition (14.1) of G
0(y), it follows that V (x,y,O) = f(x,y,O)

for all x < G0(y)
. To show G

0(y) is monotonically decreasing, we note

that due to the Corollary li..l(ii)(a), we have

(li .14.) f(x,y+l,0) - f(x,y,0) > g(x,y÷l,0) - g(x,y,0)

and from (14.1) we get

(14.5) f(x,y,O) > g(x,y,O) for all x > G
0
(y)

Combining (li-.1-) and (1i- .~ ), we get f(x,y+l,O) > g(x,y÷l,O) and hence

G
0(

y-i-I) < G(~(y). This completes the proof.

Since the control function G is eon-increasing, we can approximate

C by a linear function. The family of monotone decreasing linear functions

have the form

G0(y) = K0-~0
y and G

1(x) = K1-~ 1x where 0 < I3~ <K~, i = 0, 1.

In this case the approximately optima l policy is completely determined

by the critical numbers (K0, 
~c~’ 

K1, 
~~~ 

Such simple policies are

ideally suited for practical applications. The values of these critical

constants can be determined by standard methods of calculus (2,3]. Some

methods for computing these constants for = = 1 can also be found

in (6). For small Q, one can obtain the values of G by direct enumeration,

20
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because G < Q. We hope to present some exact and approximate methods

for computing C in the near future. -

Finally, one can show that the Theorem 14.2 is valid for Q =

However, in this case the Lemma 5.14- and Corollary 14-.i(ii)(d) are invalid.

The fact that C < ~ can be established by the method given in the

Lemma 3.2 of [2]. One can also readily extend these results for non-

linear holding costs.
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20. Abstract

OPTIMAL DISPATCHING OF A FINITE CAPACITY SHUTTLE - 
-
J

‘
Rajat K. Deb

We consider the problem of determining the optimal operating policy

of a two terminal shuttle with fixed capacity Q ( co, The passengers

arrive at each terminal according to Poisson processes and are transported

by a single carrier operating between the terminals. The interterminal

trave l time is a positive random variable with finite expectation. Under

a fairly general cost structure, \ue—ehe~~that the policy which minimizes

the expected total discounted cost over infinite time horizon has the

following form; Suppose the carrier is at one of the terminals with x

number of waiting passengers and suppose that y number of passengers

are waiting at the other terminal. Then the optimal policy is to dispatch

the carrier if and only if x > G(y), where G(y) is a monotone decreasing

control function. Furth.naore, G(y) is always less than or equal to the

carrier capacity Q. This control function can be approximated by the

linear functions G(y) = K -
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